Lecture Notes
These are a selection of my notes of courses taught at KU Leuven KULAK or at KU Leuven. If you're interested in the LATEX code, have a look on Github.
Master
M1 • 19-20 • en • G0A84AE • 6 ECTS
Algebraic Topology
M1 • 19-20 • en • G0B08AE • 6 ECTS
Differential geometry
M1 • 19-20 • en • G0B03AE • 6 ECTS
Functional Analysis
- Lecture notesBanach, Hilbert spaces, bounded and compact compact operators, Hahn-Banach extension theorem, Baire category, open mapping, closed graph, uniform boundedness, weak topologies, Banach-Alaoglu, Hahn-Banach separation theorem, amenability of groups, Krein-Milman
- Takehome IPolar decomposition, Volterra operator, Borel functional calculus
- Takehome IIProperties of bounded operators, weak topology, ... Extreme points
M1 • 19-20 • en • G0B11AE • 6 ECTS
Symplectic Geometry
M1 • 19-20 • en • G0B05AE • 6 ECTS
Riemann surfaces
M2 • 20-21 • en • G0A85AE • 6 ECTS
Group theory
M2 • 20-21 • en • G0B12AE • 6 ECTS
Differential Topology
M2 • 20-21 • en • G0V75AE • 6 ECTS
Advanced Reading Course
M2 • 20-21 • en • G0K97AE • 30 ECTS
Master's thesis
Bachelor
B1 • 16-17 • nl • G0N30BN • 9 ECTS
Analysis I
B2 • 17-18 • nl • G0N86BN • 6 ECTS
Analysis II
B2 • 17-18 • nl • X0A43AN • 5 ECTS
Numerical analysis
B2 • 17-18 • nl • X0C11AN • 9 ECTS
Differential equations
B2 • 17-18 • nl • X0A65CN • 6 ECTS
Algebra I
B3 • 18-19 • en • X0D95AE • 6 ECTS
Topology
B3 • 18-19 • en • X0C93BN • 6 ECTS
Complex analysis
B3 • 18-19 • nl • X0D42AN • 6 ECTS